Hemos hablado en el tema anterior de medida de ángulos y todos manejamos de manera intuitiva el concepto de medida. También hablamos de ángulos iguales o congruentes como aquellos que somos capaces de, moviendo uno de ellos sin deformarlo, superponerlo hasta hacerlo coincidir con el otro. Esta idea la ampliamos a la media de segmentos sin mucha dificultad.
Intuitivamente podemos entender muy bien que, para mover un objeto cualquiera (ángulo, segmento, triángulo, circunferencia, ...) sin deformarlo, podríamos, entre otras cosas, hacer movimientos de los siguientes tipos:
El haber considerado estos tres tipos de "movimientos" no ha sido una cuestión de azar y tienen una justificación matemática rigurosa, pero desde el punto de vista que nos ocupa, nos basta con entender que éstos son movimientos que no deforman.
En la definición anterior la congruencia de triángulos se representa mediante tres rayas horizontales y, en el caso de los ángulos y de los lados, las tres rayas horizontales indican que , moviendo uno de ellos sin deformarlo se puede superponer sobre el otro para hacerlos coincidir ("miden lo mismo").
Una manera de visualizar lo que son dos triángulos congruentes es pensar que lo serán siempre que sea posible recortar uno de ellos, levantarlo y moverlo hasta hacerlo coincidir exactamente con el otro. Es decir, si lo podemos mover sin deformar hasta que se superpongan.
En realidad, podríamos hablar de triángulos iguales y, según el contexto, así será. Sin embargo, dos triángulos pueden ser congruentes y estar colocados en distinto sitio del plano. Si en un problema determinado la ubicación exacta del triángulo es fundamental, queda claro que no podemos hablar de manera precisa de igualdad.
Intuitivamente podemos entender muy bien que, para mover un triángulo sin deformarlo podríamos, entre otras cosas, hacer movimientos de los tres tipos mencionados en la Introducción del tema:
Como trabajamos en el Applet adjunto, con estos movimientos, si dos triángulos tienen los lados y los ángulos respectivamente iguales, conseguiremos superponerlos haciéndolos coincidir.
En los siguientes apartados vemos que, para que 2 triángulos sean congruentes nos basta con observar algunas coincidencias entre sus elementos y no es necesario comprobar que tanto los 3 lados como los tres ángulos miden lo mismo dos a dos.
En el Applet adjunto trabajamos esta construcción como sigue:
Como en el caso anterior, construyamos mediante el Applet y veremos que sólo se puede dibujar un triángulo, salvo movimientos en el plano (desplazar, girar, invertir -simetria axial-).
Una consecuencia inmediata de este resultado es el siguiente:
Una vez más, construyamos mediante el Applet y veremos que sólo se puede dibujar un triángulo, salvo movimientos en el plano (desplazar, girar, invertir -simetria axial-).
En esta ocasión el proceso de construcción hace envidente el resultado que ya conocemos de que en un triángulo, la suma de dos cualesquiera de los lados tiene que ser mayor que el tercero.
Este caso es el más complejo de los cuatro y, como vamos a ver en el proceso de construcción, si nos dan dos lados y el ángulo opuesto a uno de ellos, podemos encontrar situaciones en las que hay dos posibles triángulos como respuesta que no son congruentes entre si, pero si además sabemos que el ángulo opuesto al otro lado conocido es menor o igual que 90º, sólo encontraremos uno. Respectivamente, si conocemos que el ángulo opuesto al otro lado es obtuso, sólo habrá una solución.
Sirva como ejemplo la construcción del Criterio 2: conocidos dos ángulos y el lado comprendido. Si variamos el tamaño del lado comprendido estaremos obteniendo triángulos no congruentes pero que sus ángulos son respectivamente iguales.
Manipula el Applet adjunto para comprobarlo.